Extensions 1→N→G→Q→1 with N=C32 and Q=C32xC6

Direct product G=NxQ with N=C32 and Q=C32xC6
dρLabelID
C34xC6486C3^4xC6486,261

Semidirect products G=N:Q with N=C32 and Q=C32xC6
extensionφ:Q→Aut NdρLabelID
C32:(C32xC6) = C32xC32:C6φ: C32xC6/C32C6 ⊆ Aut C3254C3^2:(C3^2xC6)486,222
C32:2(C32xC6) = C3xC6xHe3φ: C32xC6/C3xC6C3 ⊆ Aut C32162C3^2:2(C3^2xC6)486,251
C32:3(C32xC6) = S3xC34φ: C32xC6/C33C2 ⊆ Aut C32162C3^2:3(C3^2xC6)486,256
C32:4(C32xC6) = C3:S3xC33φ: C32xC6/C33C2 ⊆ Aut C3254C3^2:4(C3^2xC6)486,257

Non-split extensions G=N.Q with N=C32 and Q=C32xC6
extensionφ:Q→Aut NdρLabelID
C32.1(C32xC6) = C6xC3wrC3φ: C32xC6/C3xC6C3 ⊆ Aut C3254C3^2.1(C3^2xC6)486,210
C32.2(C32xC6) = C6xHe3.C3φ: C32xC6/C3xC6C3 ⊆ Aut C32162C3^2.2(C3^2xC6)486,211
C32.3(C32xC6) = C6xHe3:C3φ: C32xC6/C3xC6C3 ⊆ Aut C32162C3^2.3(C3^2xC6)486,212
C32.4(C32xC6) = C6xC3.He3φ: C32xC6/C3xC6C3 ⊆ Aut C32162C3^2.4(C3^2xC6)486,213
C32.5(C32xC6) = C2xC9.He3φ: C32xC6/C3xC6C3 ⊆ Aut C32543C3^2.5(C3^2xC6)486,214
C32.6(C32xC6) = C2xC33:C32φ: C32xC6/C3xC6C3 ⊆ Aut C32549C3^2.6(C3^2xC6)486,215
C32.7(C32xC6) = C2xHe3.C32φ: C32xC6/C3xC6C3 ⊆ Aut C32549C3^2.7(C3^2xC6)486,216
C32.8(C32xC6) = C2xHe3:C32φ: C32xC6/C3xC6C3 ⊆ Aut C32549C3^2.8(C3^2xC6)486,217
C32.9(C32xC6) = C2xC32.C33φ: C32xC6/C3xC6C3 ⊆ Aut C32549C3^2.9(C3^2xC6)486,218
C32.10(C32xC6) = C2xC9.2He3φ: C32xC6/C3xC6C3 ⊆ Aut C32549C3^2.10(C3^2xC6)486,219
C32.11(C32xC6) = C2x3+ 1+4φ: C32xC6/C3xC6C3 ⊆ Aut C32549C3^2.11(C3^2xC6)486,254
C32.12(C32xC6) = C2x3- 1+4φ: C32xC6/C3xC6C3 ⊆ Aut C32549C3^2.12(C3^2xC6)486,255
C32.13(C32xC6) = S3xC32xC9φ: C32xC6/C33C2 ⊆ Aut C32162C3^2.13(C3^2xC6)486,221
C32.14(C32xC6) = C3xS3xHe3φ: C32xC6/C33C2 ⊆ Aut C3254C3^2.14(C3^2xC6)486,223
C32.15(C32xC6) = C3xS3x3- 1+2φ: C32xC6/C33C2 ⊆ Aut C3254C3^2.15(C3^2xC6)486,225
C32.16(C32xC6) = S3xC9oHe3φ: C32xC6/C33C2 ⊆ Aut C32546C3^2.16(C3^2xC6)486,226
C32.17(C32xC6) = C6xC32:C9central extension (φ=1)162C3^2.17(C3^2xC6)486,191
C32.18(C32xC6) = C6xC9:C9central extension (φ=1)486C3^2.18(C3^2xC6)486,192
C32.19(C32xC6) = C2xC92:3C3central extension (φ=1)162C3^2.19(C3^2xC6)486,193
C32.20(C32xC6) = C18xHe3central extension (φ=1)162C3^2.20(C3^2xC6)486,194
C32.21(C32xC6) = C18x3- 1+2central extension (φ=1)162C3^2.21(C3^2xC6)486,195
C32.22(C32xC6) = C3xC6x3- 1+2central extension (φ=1)162C3^2.22(C3^2xC6)486,252
C32.23(C32xC6) = C6xC9oHe3central extension (φ=1)162C3^2.23(C3^2xC6)486,253
C32.24(C32xC6) = C2xC32:He3central stem extension (φ=1)54C3^2.24(C3^2xC6)486,196
C32.25(C32xC6) = C2xC34.C3central stem extension (φ=1)54C3^2.25(C3^2xC6)486,197
C32.26(C32xC6) = C2xC9:He3central stem extension (φ=1)162C3^2.26(C3^2xC6)486,198
C32.27(C32xC6) = C2xC32.23C33central stem extension (φ=1)162C3^2.27(C3^2xC6)486,199
C32.28(C32xC6) = C2xC9:3- 1+2central stem extension (φ=1)162C3^2.28(C3^2xC6)486,200
C32.29(C32xC6) = C2xC33.31C32central stem extension (φ=1)162C3^2.29(C3^2xC6)486,201
C32.30(C32xC6) = C2xC92:7C3central stem extension (φ=1)162C3^2.30(C3^2xC6)486,202
C32.31(C32xC6) = C2xC92:4C3central stem extension (φ=1)162C3^2.31(C3^2xC6)486,203
C32.32(C32xC6) = C2xC92:5C3central stem extension (φ=1)162C3^2.32(C3^2xC6)486,204
C32.33(C32xC6) = C2xC92:8C3central stem extension (φ=1)162C3^2.33(C3^2xC6)486,205
C32.34(C32xC6) = C2xC92:9C3central stem extension (φ=1)162C3^2.34(C3^2xC6)486,206

׿
x
:
Z
F
o
wr
Q
<